
Our team won a shared second place in the Tox24 Challenge out of 80 participants
Cirino et al., DOI: 10.1021/acs.chemrestox.5c00018
Eytcheson et al., DOI: 10.26434/chemrxiv-2025-7k7x3
​
Our recent publications
BARTSmiles: Generative Masked Language Models for Molecular Representations
Chilingaryan et al., Machine Learning; Biomolecules: 2022., DOI: 10.48550/arXiv.2211.16349
Improving VAE based molecular representations for compound property prediction
Tevosyan et al., J Cheminform. 2022 Oct 14;14(1):69., DOI: 10.1186/s13321-022-00648-x​
Enhancing Chemical-Induced Human Carcinogenic Risk Evaluation through Advanced AI Technologies,
Babayan et al, DOI: 10.3390/proceedings2024102012​
Tevosyan et al., DOI: 10.1016/j.mrgentox.2025.503858
Haßmann et al., DOI: 10.1016/j.tox.2024.153975
Khondkaryan et al,. Toxics 2023, 11, 785. DOI: 10.3390/toxics11090785
Other articles
Seal et al., Chemical Research in Toxicology, 2025, 38, 5, 759–807, DOI: 10.1021/acs.chemrestox.5c00033
Applications of machine learning in drug discovery and development
Vamathevan et al., Nat Rev Drug Discov 18, 463–477 (2019). DOI: 10.1038/s41573-019-0024-5
Andrade et al., Med Biol Res. 2016; 49(12): e5646.
​A Review of Current In Silico Methods for Repositioning Drugs and Chemical Compounds
He at al., Front. Oncol., 22 July, 2021, DOI: 10.3389/fonc.2021.711225
Editorial: In silico Methods for Drug Design and Discovery
Brogi et al., Front. Chem., 07 August 2020, DOI: 10.3389/fchem.2020.00612
Graph convolutional networks for computational drug development and discovery
Sun et al., Brief Bioinform​. 2020 May 21;21(3):919-935. DOI: 10.1093/bib/bbz042.
​Drug discovery with explainable artificial intelligence
Jiménez-Luna et al., Nat Mach Intell 2, 573–584 (2020). DOI: 10.1038/s42256-020-00236-4
​Predicting Toxicity Properties through Machine Learning
Borrero et al., Procedia Computer Science, Volume 170, 2020, Pages 1011-1016, DOI: 10.1016/j.procs.2020.03.093